

The University of Arizona Controlled Environment Agriculture Program

College of Agriculture and Life Sciences

Department of Agricultural & Biosystems Engineering

With programs in

- Education
- Extension Outreach
- Research
- Design Analysis
- Business Development

Ventilation and Cooling

Procedures to modify the greenhouse effect

ventilation

- for air exchange
- natural, forced air, screened

evaporative cooling

• for reducing air temperature

shading

• prevent solar radiation

Expectations

Temperature Reduction		Mo Red (or in	Moisture Reduction (or increase)			Prevent Carbon Dioxide Depletion	
	Air Movement for Oxygen & Carbon Dioxide Exchange			Improved Labor Climate			
	1. 1	I.V.		1.18			

Begin Cooling Difficulties Immediately!!

Ventilation and Cooling

Procedures to modify the greenhouse effect

forced air ventilation

Benefits

Positive Displacement of Air

Immediate Response to Controller

Fan Staging

- Small Air Exchange in Winter
- Reduce over-Cooling
- Save Electrical Energy

Combine With Other Systems

- Evaporative Cooling
- De-Humidification

Active Ventilation and Cooling

Capacity

• Cubic feet per minute (CFM)

Static Pressure

 Air Flow Resistance (inches water)

Power Requirement

 Motor Horsepower

Floor Plan of 24' x 100' Greenhouse

Vent Inlet Openings

Louver Shutters

- Square shape
- "Point" Source

Continuous Windows

- Motorized Window
- Continuous Inlet
- "Line" Source

Sidewall Opening

 Roll-up Sidewalls

Locating Fans and Inlets

Location of Inlet More Critical Than Location of Fan

• Suction by Fan on Greenhouse

Distance From Inlet to Fan

- Freestanding 100 Ft
- Multi-span 200 Ft

Put Inlets at Plant Height

• Long distance increases air temperature rise from inlet to fan

Locating Fans and Inlets

Inlet Opening (endwall side view)

Locating Fans and Inlets

Inlet Opening (endwall top view)

Ventilation and Cooling

Procedures to modify the greenhouse effect

Natural or passive ventilation

Natural Ventilation

Traditional for Glasshouses

Cooling Dependent Upon

- Air Temperature Difference
- Winds

Least cooling in summer when most needed

Natural Ventilation

Ridge or Peak Openings

Sidewall Openings

Unglazed Roof Bays

Screen Greenhouses

Passive Ventilation and Cooling

Vent

Floor Area

Average Height

Floor Area

Roof Vent in Partial Open Position

Traditional Dutch Venlo style glass greenhouse with ridge ventilation

Opening Roof Greenhouse

VanWingerden GH Co.

Early design (1989 'MX')

Hinge at gutter

One side open per bay

Roll-up Sidewalls and Opening Screened Roof

Ventilation and Cooling

Procedures to modify the greenhouse effect

• Ventilation and Cooling

OBJECTIVE OF EVAPORATIVE COOLING

Cool Below Outside Air Temperature

Humidify Inside Air

Modify Leaf Temperature

Propagation

THEORY OF EVAPORATIVE COOLING

- Water Evaporates
- Energy is Consumed and Air is Cooled and Humidified
- Evaporation Rate Depends on "Dryness" (Humidity) of Air, and Temperature of the Air
- Continued Evaporation Requires Exchange of Humid Air with Dry Air

TYPES OF EVAPORATIVE COOLING SYSTEMS

Pad and Fan

Components

- Pad at Ventilation Inlet
- Ventilation Fans

Operation

- Recirculate Water Through Wetted Matrix
- Force Outside Air Through Matrix
- Want 'Tight' Greenhouse (few leaks)

Wet Wall Pad at Inlet Window

Wet Wall Pad at Inlet Window

insect screening Wet Pad Wet Pad

Wet Walls on Main Pathway of Multi-bay Greenhouse Structure

EuroFresh Farms, Willcox, AZ

Inlet Vent above Main Pathway of Multi-bay Greenhouse Structure

EuroFresh Farms, Willcox, AZ

Misting Components

Mist Nozzles

- Low Pressure (40 60 psi)
- High Volume (4 GPH)
- One Nozzle per 25 50 FT

Overhead Pipe Network

Pump and Controls

Fan Ventilation

Misting Operation

"Large" Water Droplets

Surface Wetting Occurs

Contact Evaporation

Intermittent Spraying

Good Cooling Uniformity

Fog Cooling Components

Fog Nozzles

High Pressure (1000+ psi)

- Low Volume (1.2 GPH)
- One Nozzle per 50 100 Ft
- Overhead Pipe Network

Pump, Filters and Controls

Water Quality

Fan Ventilation

Fog Cooling Operations

"Tiny" Water Droplets

Instant Evaporation

No Wetting

- 3 to 12 F Cooling (humid climate)
- 10 to 35 F Cooling (arid climate)

Excellent Cooling Uniformity

1 GPM per 2000 Ft Greenhouse

Fog Nozzle for Cooling

Fogfor Cooling

Ventilation and Cooling

Procedures to modify the greenhouse effect

- Shading Systems
 - prevent solar radiation from entering greenhouse

Shading

Reduces Greenhouse Cooling Load • Leaf Temperature • PPF (PAR Needed for Growth) Plant Stress

Shading Systems

Paint Glazing

Attached Exterior Netting

Movable, Exterior Netting

Movable, interior Shade Material

Attached Exterior Shade Netting

Movable, Exterior Shade Netting

Movable, Interior Shade Material

Heating

Procedures to modify the greenhouse effect

- air heating
 - by hot air
 - by hot water
- root zone heating
 - bench heating
 - floor heating

Exhaust flue

Fresh air intake

Heating System "unit heater"

Hot air Gas-fired Intake/exhaust Vents

Natural Gas for Heating Fuel

Location of the Unit Heater Relative to the Crop

Ventilation Fan and Plastic Tube Air Distribution Duct

Ventilation Fan and Plastic Tube Air Distribution Duct

FORCED HOT AIR HEATING

Heater 'On' / Inlet & Exhaust Shutters 'Closed'

FORCED HOT AIR HEATING

Ventilation Mode

Heater 'Off' / Inlet & Exhaust Shutters 'Open'

HOT WATER PIPE HEATING

Air Heating Pipe Loop

Under Bench Air Heating Hot Water Finned Tube

Pipe Rail Hot Water Heating and Transport System

HOT WATER PIPE HEATING

Root Zone or Floor Heating

Concrete Floor Heating System

H.A.F. Fans - Horizontal Air Flow

Environmental Monitoring and Control

Procedures to modify the greenhouse effect

- Thermostats to Computers
- Energy Conservation Techniques

Environmental Control System

GOALS

- Enhance Plant Growth
- Assure Timing of Maturity
- Maintain Quality

PROCEDURE

- Provide Spatial Uniformity
- Provide Control Strategy
- Minimize Energy Consumption

HEATING/COOLING CONTROL SENSOR

Locate Near Plant Canopy

Representative Greenhouse Location

Shade From Direct Sun

Protect From Moisture Aspirate With Fan

Environmental Control and Plant Culture

Monitor Plant Parameters with Sensors

- Air Temperature
- Root Zone Temperature
- Humidity
- Light Intensity
- Nutrients (pH & E.C. & CO₂)
- Time

Basic Air Temperature Monitoring

Inexpensive

Accurate

Manual

Remote Sensor Digital Temperature Monitor

Thermistor

Infrared Surface Temperature Sensors

are

RADIATION MEASUREMENT

Radiometric (Total)

- Irradiance (Watt per square meter)
- Pyranometer (250 2300 nm)

Photosynthetic (PAR)

- PPF (micromole per square meter per second)
- Quantum Sensor (400 700 nm)

Radiation Measurement Sensors

HUMIDITY MEASUREMENT

Psychrometer

 Dry Bulb and Wet Bulb Air Temperature

Solid State Device

• Capacitance or Inductance

Aspirated Psychrometer

Fan

Electronic Sensors Water Storage

CARBON DIOXIDE MEASUREMENT

Infrared Absorption concentration (ppm)

Multi-Zong Irrigation Timer

	AUTO MANUAL RAIN-OFF OPTIONS SYSTEM CHECK PROGRAM 3 PROGRAM 4 PROGRAM 5 PROGRAM 5	1 2 30% 40% 4 5 400 70% 7 8 347 847	3 ENTER TUE STN 6 WATER 9 STOLE 9 STOLE 5 STATE	
HARE HERE HERE	MY 1 2 3 4 5 6 7 8 MASTER VALVE OR PURPERIANT STATIONS 1 1 3 4 5 6 7 8 1 1 0 7 7 7 7 7 7 7 7		PERIOR ONTROLS D.,INC.	
	PRESS TO LIFT		VALENCIA	CA.

Irrigation Zone Solenoid Control Valve

Environmental Zone Step-Controller

Computer-based Controller

Plastic Greenhouse Energy Conservation

Horticultural Engineering Research Programs Impact on Industry

90% reduction

• of greenhouse [GH] energy-use over past 30 years

60% of all US GH's

are covered with double-layer, air-inflated polyethylene film

Internal GH energy blanket system

- ubiquitous in industry
- evolution into shading, cooling and insect screening

100% of field transplant crops

• grown in economical GH's

Horticultural Engineering Research Programs Impact on Industry

Floor heating technology applications

necessary for ebb & flood irrigation system

Transportable bench system US industry standard

• for highly mechanized potted plant growing systems

GH Controlled Environment Agriculture technology

- applied to plant growth chambers,
- plant micro-propagation facilities,
- plant biotechnology systems,
- NASA bioregenerative life-support in space,
- phytoremediation, plants are the processors.

Integrated Crop Production System

Integrated Crop Production System

It is Important to improve environmental control and uniform distribution of environmental parameters

such that:

- [1] the effect on the plant's microenvironment [mass temperature, PPF, and vapor pressure], and
- [2] the subsequent effect on plant processes such as metabolism, photosynthesis & gaseous transfer

are similar for all plants within the controlled environment system.

Fundamentals of CEA Provide Food Production and Life Support

Low mass, inflatable film structure Supplemental lighting & Solar fiber-optics

Recirculating CO₂ - Oxygen System Low mass, cable-supported root zone Recirculating Hydroponic Plant Production System CEAC Laboratory, Tucson, AZ